Automatic Detection of Cortical Bone’s Haversian Osteonal Boundaries
نویسندگان
چکیده
This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae) present in the secondary osteons/Haversian system (osteon) of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN), particle swarm optimization (PSO), and adaptive threshold (AT). In lieu of human bone, slides (at 20× magnification) from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1) orientation, (2) size (ellipse perimeter) and (3) Euler number (a topological measure). From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line). Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice) suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD) of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.
منابع مشابه
Numerical modeling of oxygen distributions in cortical and cancellous bone: oxygen availability governs osteonal and trabecular dimensions.
Whereas recent work has demonstrated the role of oxygen tension in the regulation of skeletal cell function and viability, the microenvironmental oxemic status of bone cells remains unknown. In this study, we have employed the Krogh cylinder model of oxygen diffusion to predict the oxygen distribution profiles in cortical and cancellous bone. Under the assumption of saturation-type Michaelis-Me...
متن کاملSecondary osteons scale allometrically in mammalian humerus and femur
Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We...
متن کاملThe Multiscale Origins of Fracture Resistance in Human Bone and Its Biological Degradation
Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone’s strength or intrinsic fracture resistance, while crack-tip shielding mechanism...
متن کاملOrientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue.
Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation....
متن کاملRepair of Microdamage in Osteonal Cortical Bone Adjacent to Bone Screw
Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015